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PART 1: BACKGROUND



Low-Rank Approximations

 Optimal rank-𝒌 approximation is 𝑼𝒌𝚺𝒌𝑽𝒌
𝑻.

 Optimal error is 𝚺⊥ .

 What really matters are the leading singular subspaces:

 How to compress a large matrix into one of lower rank?

 Gold standard: the singular value decomposition,

≈



SVD: Optimal, But Very Unstructured



Interpolative Decompositions

 This is called an interpolative decomposition. Applications in:

 Gaussian process regression,

 Neural network pruning,

 Electronic structure theory,

 And more…

 Also possible to interpolate using rows, or rows and columns (CUR decomposition).

 We might prefer to approximate A’s columns in terms of other columns.

 We want J, a set of k column indices, such that



Much More Structured!



How To Choose The Basis Columns?

 Projecting into 𝒰𝑘 is optimal, so try to make range 𝑨: , 𝑱 ≈ 𝒰𝒌.

 Let 𝜙max(𝐽) = largest principal angle between range(𝐴: , 𝐽) and 𝒰𝑘. 

Theorem (Golub, Klema, and Stewart, 1976)1.

 Leads to the Golub-Klema-Stewart (GKS) Algorithm1.

1. G.H. Golub, V. Klema, and G. Stewart, Rank Degeneracy and Least Squares Problems, Tech. Report STAN-CS-76-559, Stanford University, 1976.



The GKS Algorithm
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rank-revealing QR 

factorization:

𝑉𝑘
𝑇[Π1 Π2] = 𝑄[𝑅1 𝑅2]
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Pseudocode:
1. 𝑈𝑘 , Σ𝑘 , 𝑉𝑘 ← svd 𝐴 .

2. Π, 𝑄, 𝑅 ← rrqr 𝑉𝑘
𝑇 , 𝑘 .

3. return 𝐴: ,𝐽 = 𝐴Π: ,1:𝑘 .

The GKS Algorithm



PART 2: THE RGKS ALGORITHM



GKS Algorithm
1. 𝑈𝑘 , Σ𝑘 , 𝑉𝑘 ← svd 𝐴 .

2. Π, 𝑄, 𝑅 ← rrqr 𝑉𝑘
𝑇 , 𝑘 .

3. return 𝐴: ,𝐽 = 𝐴Π: ,1:𝑘 .

 Replace the SVD with a randomized SVD2.

RGKS Algorithm
1. 𝑈𝑘 , Σ𝑘 , 𝑉𝑘 ← randomized_svd(𝐴, 𝑘, 𝑝, 𝑞)
2. Π, 𝑄, 𝑅 ← rrqr( 𝑉𝑘

𝑇, 𝑘).
3. return 𝐴: ,𝐽 = 𝐴Π: ,1:𝑘 .

 𝑝 = oversampling, 𝑞 = power iterations.

 Like GKS, but with approximated subspaces:

2. N. Halko, P. G. Martinsson, and J. A. Tropp, Finding Structure With Randomness: Probabilistic Algorithms for Constructing 

Approximate Matrix Decompositions, SIAM Review, 53 (2011).



RGKS Is Efficient



RGKS Is Accurate



PART 3: ERROR ANALYSIS OF RGKS



Reframing RGKS

 RGKS uses 𝐴’s columns to approximate 𝒰𝑘.

 Does so by making 𝜎min(𝑉𝐽,1:𝑘) large. Why does this work?

 Let 𝜑𝑖(𝐽) = principal angles between span 𝑒𝑗 ∶ 𝑗 ∈ 𝐽 and 𝒱𝑘 .

 𝝋max(𝑱) = max𝒊𝝋𝒊 = arccos(𝝈min(𝑽𝑱,𝟏:𝒌)).



Theorem. Provided that 𝑘 ≤ 𝑛/2 and 𝜑max(𝐽) < 𝜋/2,

where 𝑟𝑘 = 𝜎𝑘+1 𝐴 −2σ𝑖≥𝑘+1𝜎𝑖 𝐴
2 is the residual stable rank.

 GKS guarantees tan𝜑max(𝐽) ≤ 𝑞 𝑛, 𝑘 2 − 1, where

𝑞 depends on the RRQR algorithm.

 RGKS guarantees tan ෝ𝝋max ≤ 𝑞 𝑛, 𝑘 2 − 1, where

ෝ𝝋max = largest angle between 𝓥𝒌 and span 𝒆𝒋 ∶ 𝒋 ∈ 𝑱 .



Relating ෝ𝝋max(𝑱) And 𝝋max(𝑱)

 Let 𝜃max = largest principal angle between 𝒱𝑘 and 𝒱𝑘.

Theorem. 𝜑max(𝐽) ≤ ො𝜑max(𝐽) + 𝜃max.

 We get a bound for RGKS:

…where 𝜃max captures randomization errors.

 It’s known3 that 𝜃max is small when 𝜎𝑘+1(𝐴) ≪ 𝜎𝑘(𝐴).

3. A. K. Saibaba, Randomized Subspace Iteration: Analysis of Canonical Angles and Unitarily Invariant 

Norms, SIAM Journal on Matrix Analysis and Applications, 40 (2019).



Tight When 𝝈𝒌+𝟏 𝑨 ≪ 𝝈𝒌 𝑨



What About When 𝜎𝑘+1(𝐴) ≈ 𝜎𝑘(𝐴)?

 𝜃max ≈ 𝜋/2, but RGKS still performs well.

 𝜃max measures aggregate errors:

…where = 𝑉𝑘𝑉𝑘
𝑇, 𝑃 = 𝑉𝑘 𝑉𝑘

𝑇.

 Better to consider component-wise errors, like

Theorem. If 𝜑max(𝐽) < 𝜋/2, then
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