The Randomized Golub-Klema-Stewart Algorithm

Robin Armstrong

PhD Student, Cornell University

Center for Applied Mathematics

BASED ON WORK SUPPORTED BY THE NATIONAL SCIENCE FOUNDATION.

Joint work with...

Alex Buzali MS Student, Harvard University School of Engineering and Applied Sciences Anil Damle Professor, Cornell University Department of Computer Science

PART 1: BACKGROUND

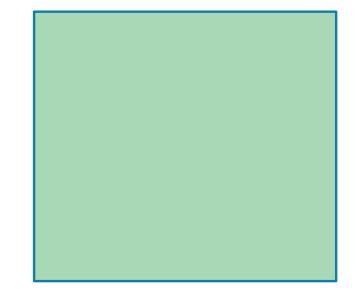
Low-Rank Approximations

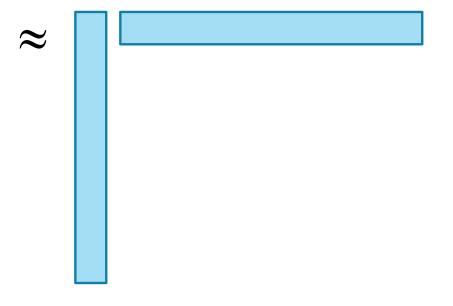
- How to compress a large matrix into one of lower rank?
- Gold standard: the singular value decomposition,

$$A = U\Sigma V^T = \begin{bmatrix} U_k & U_{\perp} \end{bmatrix} \begin{bmatrix} \Sigma_k & 0 \\ 0 & \Sigma_{\perp} \end{bmatrix} \begin{bmatrix} V_k^T \\ V_{\perp}^T \end{bmatrix}.$$

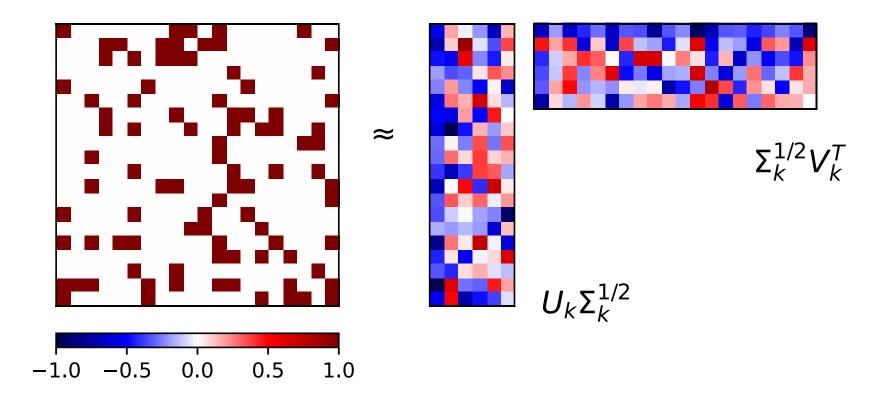
- Optimal rank-*k* approximation is $U_k \Sigma_k V_k^T$.
- Optimal error is $\|\Sigma_{\perp}\|$.
- What really matters are the **leading singular subspaces**:

 $\mathcal{U}_k = \operatorname{range}(U_k), \qquad \mathcal{V}_k = \operatorname{range}(V_k).$





SVD: Optimal, But Very Unstructured



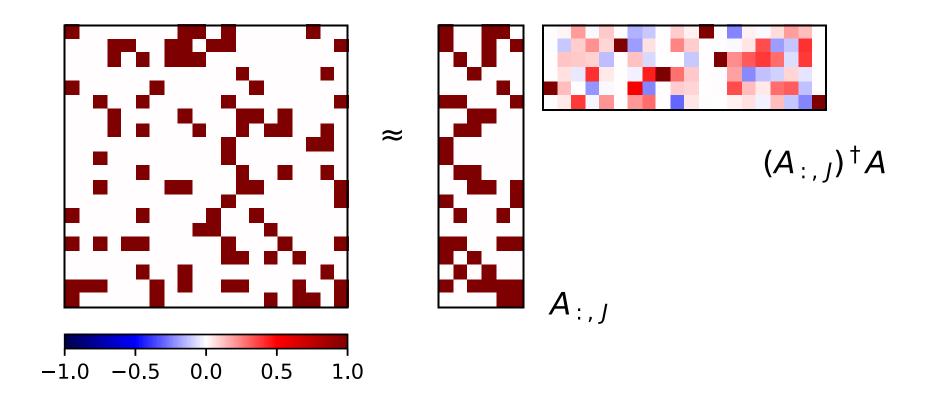
Interpolative Decompositions

- We might prefer to approximate A's columns in terms of other columns.
- We want *J*, a set of *k* column indices, such that

 $||A - A_{:,J}(A_{:,J})^{\dagger}A|| \approx ||\Sigma_{\perp}||.$

- This is called an interpolative decomposition. Applications in:
 - Gaussian process regression,
 - Neural network pruning,
 - Electronic structure theory,
 - And more...
- Also possible to interpolate using rows, or rows and columns (CUR decomposition).

Much More Structured!



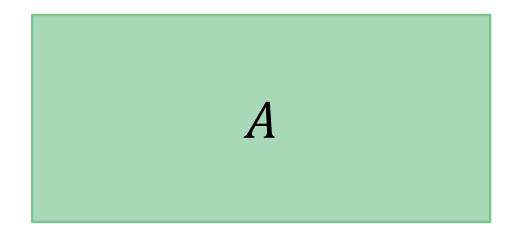
How To Choose The Basis Columns?

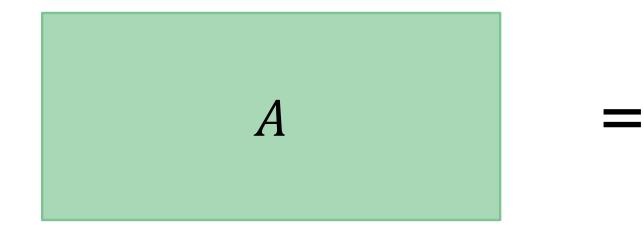
- Projecting into \mathcal{U}_k is optimal, so **try to make range** $(A_{:,I}) \approx \mathcal{U}_k$.
- Let $\phi_{\max}(J) = \text{largest principal angle between range}(A_{:,J})$ and \mathcal{U}_k .

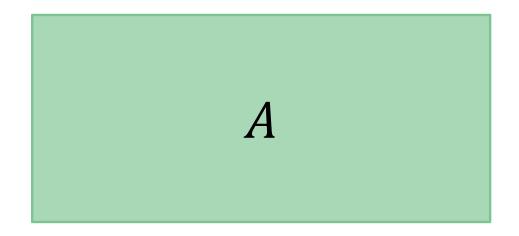
```
Theorem (Golub, Klema, and Stewart, 1976)<sup>1</sup>.

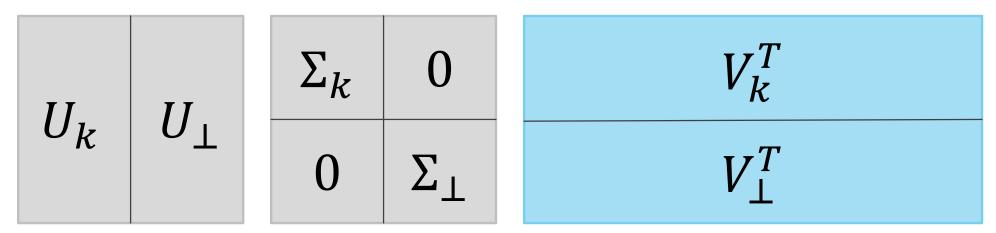
\sin \phi_{\max}(J) \leq \frac{\sigma_{k+1}(A)}{\sigma_k(A)\sigma_{\min}(V_{J,1:k})}.
```

Leads to the Golub-Klema-Stewart (GKS) Algorithm¹.

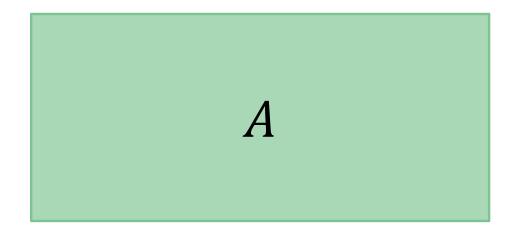




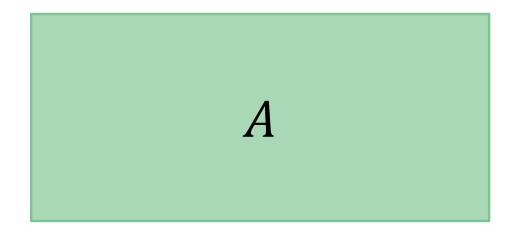




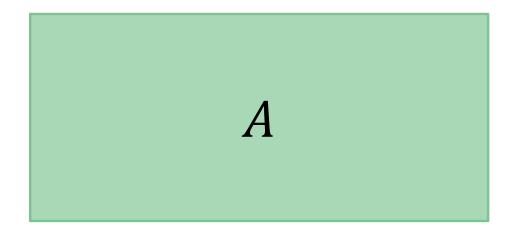


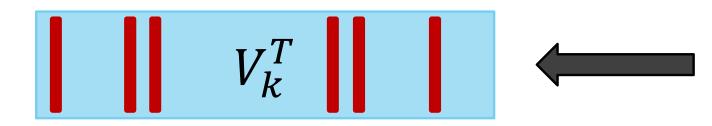


$$V_k^T$$

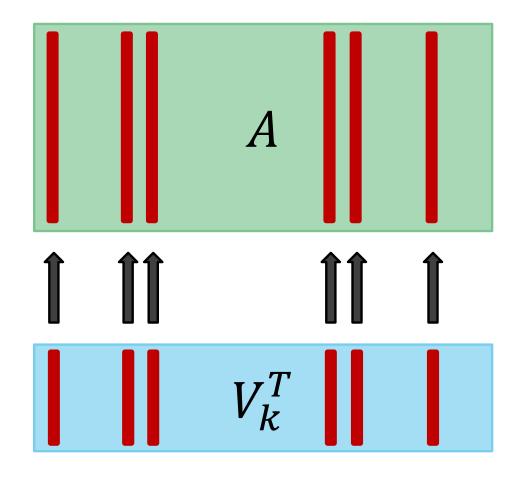


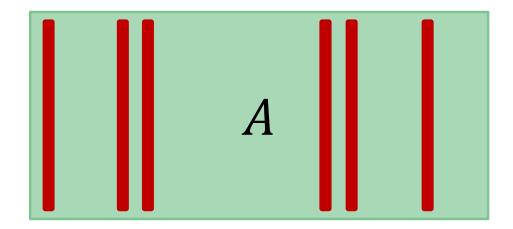
rank-revealing QR factorization: $V_k^T[\Pi_1 \Pi_2] = Q[R_1 R_2]$

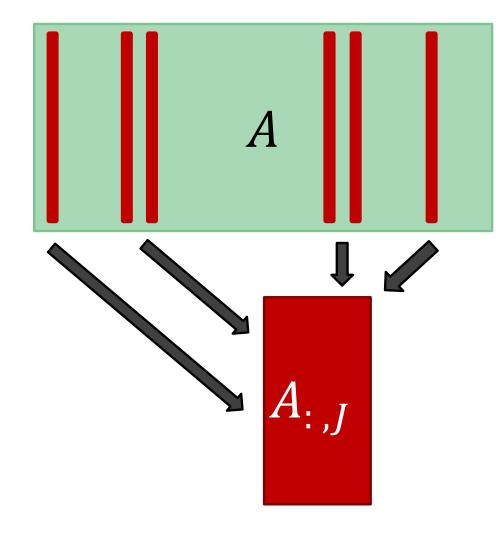


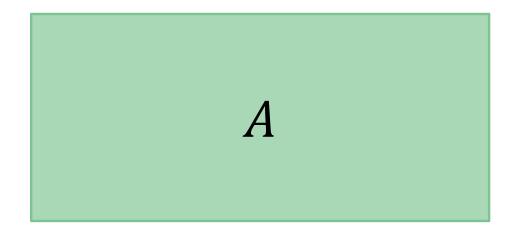


rank-revealing QR factorization: $V_k^T[\Pi_1 \Pi_2] = Q[R_1 R_2]$



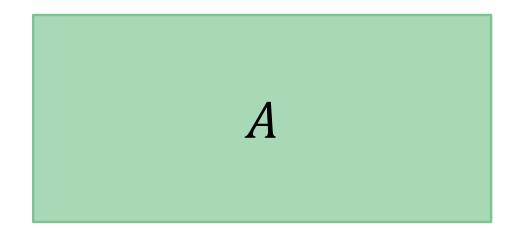






 \approx

 $\left(A_{:,J}\right)^{+}A$



Pseudocode:

- 1. $U_k, \Sigma_k, V_k \leftarrow \text{svd}(A)$.
- 2. $\Pi, Q, R \leftarrow \operatorname{rrqr}(V_k^T, k)$.
- 3. return $A_{:,J} = A \prod_{:,1:k}$.

 \approx

 $\left(A_{:,J}\right)^{+}A$

PART 2: THE RGKS ALGORITHM

GKS Algorithm

- 1. $U_k, \Sigma_k, V_k \leftarrow \text{svd}(A)$.
- 2. $\Pi, Q, R \leftarrow \operatorname{rrqr}(V_k^T, k)$.
- 3. return $A_{:,J} = A \prod_{:,1:k}$.
- Replace the SVD with a **randomized SVD**².

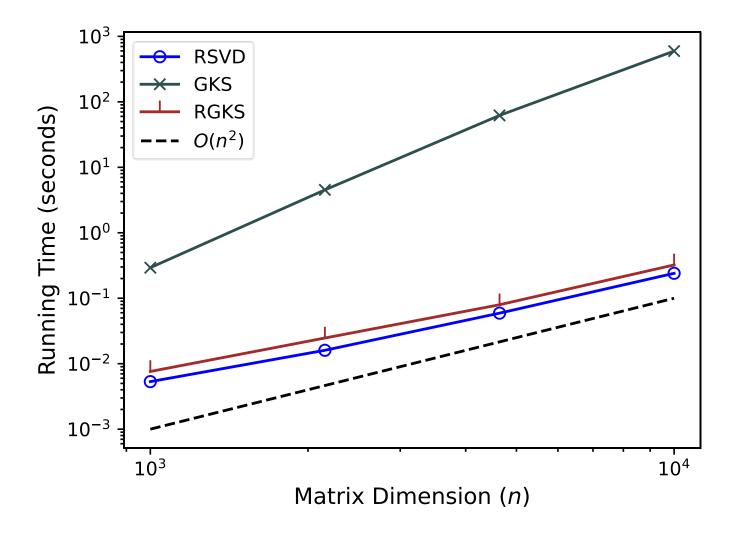
RGKS Algorithm1. $\hat{U}_k, \hat{\Sigma}_k, \hat{V}_k \leftarrow randomized_svd(A, k, p, q)$ 2. $\Pi, Q, R \leftarrow rrqr(\hat{V}_k^T, k).$ 3. return $A_{:,J} = A\Pi_{:,1:k}.$

- p = oversampling, q = power iterations.
- Like GKS, but with approximated subspaces:

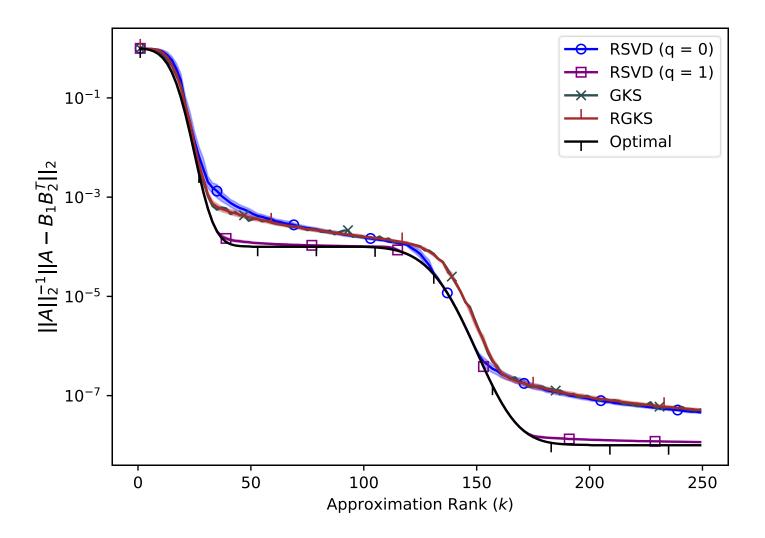
$$\widehat{\mathcal{U}}_k = \operatorname{range}(\widehat{U}_k), \qquad \widehat{\mathcal{V}}_k = \operatorname{range}(\widehat{V}_k).$$

2. N. Halko, P. G. Martinsson, and J. A. Tropp, *Finding Structure With Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions, SIAM Review, 53 (2011).*

RGKS Is Efficient



RGKS Is Accurate



PART 3: ERROR ANALYSIS OF RGKS

Reframing RGKS

- RGKS uses A's columns to approximate \mathcal{U}_k .
- Does so by making $\sigma_{\min}(V_{J,1:k})$ large. Why does this work?

range
$$(A_{:,J}) \xleftarrow{A}{} \operatorname{span}\{e_j : j \in J\}$$

 $\mathcal{U}_k \xleftarrow{A}{} \mathcal{V}_k$

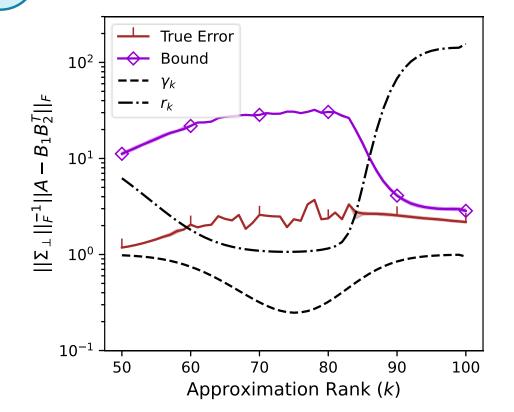
- Let $\varphi_i(J)$ = principal angles between span $\{e_j : j \in J\}$ and \mathcal{V}_k .
- $\varphi_{\max}(J) = \max_i \varphi_i = \arccos(\sigma_{\min}(V_{J,1:k})).$

Theorem. Provided that
$$k \leq n/2$$
 and $\varphi_{\max}(J) < \pi/2$,
 $\|A - A_{:,J}(A_{:,J})^{\dagger}A\|_{\mathrm{F}} \leq \|\Sigma_{\perp}\|_{\mathrm{F}}\sqrt{1 + \frac{1}{r_k}\sum_{i=1}^k \tan^2 \varphi_i(J)},$
where $r_k = \sigma_{k+1}(A)^{-2}\sum_{i\geq k+1}\sigma_i(A)^2$ is the **residual stable rank**.

• GKS guarantees $\tan \varphi_{\max}(J) \le \sqrt{q(n,k)^2 - 1}$, where q depends on the RRQR algorithm.

$$\widehat{\mathcal{V}}_k \xleftarrow{\widehat{\varphi}_{\max}} \operatorname{span}\{e_j : j \in J\} \xleftarrow{\varphi_{\max}} \mathcal{V}_k$$

■ RGKS guarantees $\tan \hat{\varphi}_{\max} \le \sqrt{q(n,k)^2 - 1}$, where $\hat{\varphi}_{\max} = \text{largest angle between } \hat{\mathcal{V}}_k \text{ and } \text{span}\{e_j : j \in J\}.$



Relating $\widehat{\varphi}_{\max}(J)$ And $\varphi_{\max}(J)$

• Let θ_{\max} = largest principal angle between $\hat{\mathcal{V}}_k$ and \mathcal{V}_k .

Theorem. $\varphi_{\max}(J) \leq \hat{\varphi}_{\max}(J) + \theta_{\max}$.

• We get a bound for RGKS:

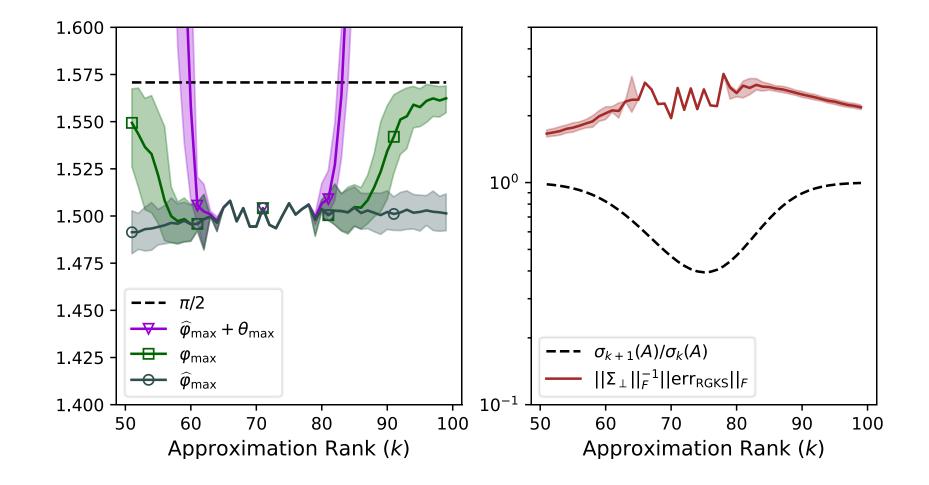
$$\|A - A_{:,J}(A_{:,J})^{\dagger}A\|_{\mathrm{F}} \leq \|\Sigma_{\perp}\|_{\mathrm{F}}\sqrt{1 + \frac{k}{r_k}\tan^2(\widehat{\varphi}_{\mathrm{max}}(J) + \theta_{\mathrm{max}})},$$

...where θ_{\max} captures randomization errors.

• It's known³ that θ_{\max} is small when $\sigma_{k+1}(A) \ll \sigma_k(A)$.

3. A. K. Saibaba, Randomized Subspace Iteration: Analysis of Canonical Angles and Unitarily Invariant Norms, SIAM Journal on Matrix Analysis and Applications, 40 (2019).

Tight When $\sigma_{k+1}(A) \ll \sigma_k(A)$



What About When $\sigma_{k+1}(A) \approx \sigma_k(A)$?

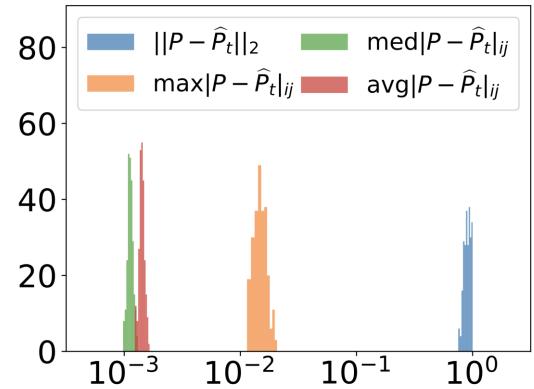
- $\theta_{\max} \approx \pi/2$, but RGKS still performs well.
- θ_{max} measures aggregate errors:

 $\sin \theta_{\max} = \|P - \widehat{P}\|_2,$...where = $V_k V_k^T$, $\widehat{P} = \widehat{V}_k \widehat{V}_k^T$.

Better to consider component-wise errors, like

$$\eta = \max_{i,j} |P_{i,j} - \widehat{P}_{i,j}|, \quad \text{or}$$
$$\mu = \min_{Q \in \mathbb{O}(k)} ||V_k - \widehat{V}_k Q||_{2 \to \infty}.$$

Theorem. If $\varphi_{\max}(J) < \pi/2$, then $\cos \varphi_{\max}(J) \ge \cos \widehat{\varphi}_{\max}(J) - \frac{2kc_k\mu}{\cos \widehat{\varphi}_{\max}(J)} + \mathcal{O}(\mu^2).$



Want to learn more?

Preprint at https://doi.org/10.48550/arXiv.2310.09452.

THANK YOU!