
“Collect, Commit, Expand”: 
A Strategy for Faster CPQR-Based Column Selection

on Short, Wide Matrices

Robin Armstrong

PhD Candidate, Cornell University, Center for Applied Mathematics

Mid-Atlantic Numerical Analysis Day, November 15th, 2024



Joint work with…

Anil Damle
Assistant Professor, Cornell University

Department of Computer Science



▪ Let 𝐴 ∈ ℝ𝑚×𝑛, 𝑘 ≥ 1. Find 𝒌 columns that are large and linearly independent.

▪ Formalized as volume maximization: 

max𝑆∈ 𝑛 𝑘vol(𝐴 : , 𝑆 ),

where vol 𝑋 = det 𝑋𝑇𝑋 .

▪ Formalized as singular value maximization: 

max𝑆∈ 𝑛 𝑘𝜎min 𝐴 : , 𝑆

▪ These problems are NP-hard [2].

The Column Subset Selection Problem

[2] Civril and Magdon-Ismail, Theoretical Computer Science (2009).



CSSP in Matrix Approximation

≈

[2] Civril and Magdon-Ismail, Theoretical Computer Science (2009).

▪ How to approximate a matrix in terms of 
its own columns? We want:

min𝑆∈ 𝑛 𝑘 𝐴 − መ𝐴𝑆

where መ𝐴𝑆 = 𝐴 : , 𝑆 𝐴 : , 𝑆 +𝐴.

▪ Solution: make vol 𝐴 : , 𝑆 large!

▪ Theorem [1]: If vol 𝐴 : , 𝑆 is within a factor 

𝜇 ≥ 1 of its maximum over 𝑆 ∈ 𝑛 𝑘, then

𝐴 − መ𝐴𝑆 ∞
≤ 𝜇 𝑘 + 1 ⋅ minrank 𝐴′≤𝑘 𝐴 − 𝐴′ 2
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▪ Given nonlinear dynamics:

𝑑𝑥

𝑑𝑡
= 𝐴𝑥 𝑡 + 𝑓 𝑥 𝑡 ,

…and a reduced-order surrogate: 𝑥 𝑡 ≈ 𝑉𝑧 𝑡 ,

𝑑𝑧(𝑡)

𝑑𝑡
= 𝑉𝑇𝐴𝑉 𝑧 𝑡 + 𝑉𝑇𝑓 𝑉𝑧 𝑡

▪ Can we evaluate only a few components of 𝒇?

▪ DEIM algorithm [1]: solve 𝒋𝟏…𝒋𝒌 ⟵ CSSP(𝑽𝑻), evaluate

𝑓𝑗1 𝑉𝑇𝑧 𝑡 …𝑓𝑗𝑘 𝑉𝑇𝑧 𝑡 , and use interpolary projection to

estimate the remaining components.

CSSP in Model Order Reduction

[1] Chaturantabut and Sorensen, SIAM Journal on Scientific Computing (2010).

Image source: Yang Li and Fangjun Mei, Deep 
learning-based method coupled with small sample 
learning for solving partial differential equations, 
Multimedia Tools and Applications (2021).



Column Pivoted QR Factorization

𝐴𝛱 = 𝑄𝑅

input matrix

permutation; moves 
basis columns to the 

front

rotation

transformed input; 
triangular structure 
reveals geometry of 

basis columns.

▪ Projection pursuit is a greedy algorithm for CSSP.

1. for 𝑖 = 1,… , 𝑘:
2. find the largest column.
3. add it to the “skeleton set”.
4. orthogonally project all columns off of it.

▪ Column-pivoted QR implements projection pursuit as
a matrix factorization.

1. 𝑅 ← 𝐴, 𝑄 ← 𝐼𝑚, 𝛱 ← 𝐼𝑛.
2. for 𝑖 = 1,… ,𝑚:
3. find the largest residual norm (look at 𝑅).
4. swap that column to the front (modify 𝛱, 𝑅).
5. rotate to expose new residual norms (modify 𝑄, 𝑅).



𝐴Π = 𝑄 𝑅
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Towards More Efficient Column Selection

▪ BLAS-2 Householder reflections are the most expensive part of CPQR.

▪ Can we limit the amount of work dedicated to reflections?

▪ Previous solutions: reflect only a few rows at a time, defer the full reflection to BLAS-3.
▪ …with partial Householder reflections [6], or
▪ …with randomized sketching [5, 7].

▪ What about matrices with far more columns than rows?
▪ Spectral clustering [4]: rows ⟷ clusters, columns ⟷ data points.
▪ Model order reduction [1]: rows ⟷ reduced coordinates, columns ⟷ full coordinates.
▪ Computational chemistry [3]: rows ⟷ orbitals, columns ⟷ 3D grid points.

[1] Chaturantabut and Sorensen, SIAM Journal on Scientific Computing, 2010.
[3] Damle, Lin, and Ying, Journal on Chemical Theory and Computing, 2015.
[4] Damle, Minden, and Ying, Information and Inference, 2018.
[5] Martinsson, Quintana-Ortí, Heavner, and de Geijn, SIAM Journal on Scientific Computing, 2017.
[6] Quintana-Ortí, Sun, and Bischof, SIAM Journal on Scientific Computing, 1998.
[7] Woolfe, Liberty, Rokhlin, and Tygert, Applied and Computational Harmonic Analysis, 2008.



“Collect, Commit, Expand”

▪ Main Idea no. 1: large-norm columns are more likely to be good basis columns.

▪ Main Idea no. 2: apply CPQR on only a subset of large columns, then check correctness.

▪ Lemma. Let 𝐴 = [𝐴1 𝐴2] and let 𝐴Π = 𝑄𝑅, 𝐴1Π1 = 𝑄1𝑅1 be CPQR factorizations.
Suppose that for some 𝑖 ≥ 1,

𝑅1 𝑖, 𝑖 ≥ max𝑗 𝐴2 : , 𝑗 2 .

Then, assuming no ties in residual column norm,
𝐴Π : , 1: 𝑖 = 𝐴1Π1 : , 1: 𝑖 .

▪ Algorithm overview:
▪ Collect the tracked columns with largest norm (“candidates”).
▪ Commit a few of them into the basis (using a smaller CPQR).
▪ Expand the tracked set to new columns (using a lower norm threshold).
▪ Repeat.



Algorithm Setup

𝑛

𝐴 ∈ ℝ𝑚×𝑛𝑚
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Algorithm Setup

▪ “Tracked” columns have large residual norm, “untracked” columns have smaller overall norm.
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▪ Move the largest tracked columns to the front.
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▪ Move the largest tracked columns to the front.
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▪ CPQR factorization of candidates; standard Householder reflections.

𝑪𝚷 = 𝑸𝑹
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▪ Examine CPQR factors to decide which candidates go into the skeleton.

𝑪𝚷 = 𝑸𝑹
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▪ Examine CPQR factors to decide which candidates go into the skeleton.
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▪ Apply a BLAS-3 reflection to the tracked set; update residual norms.
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▪ Move the largest “untracked” columns into the “tracked” set.
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▪ Apply all previous reflections to the newly tracked columns (BLAS-3); update their residual norms.

skeleton 
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▪ Repeat until the skeleton is complete.

skeleton 
columns



▪ We draw 𝑛 i.i.d. samples from a Gaussian mixture model
with 𝑘 = 20 components.

▪ Kernel matrix: 𝐾 𝑖, 𝑗 = exp −
1

2𝜎2
𝑥𝑖 − 𝑥𝑗 2

2
= 𝑉𝐷𝑉𝑇.

▪ Laplacian embedding: 𝑍(: , 𝑗) = 𝑉 𝑗, 1: 𝑘 𝑇.

▪ Running QRCP on 𝑍 selects one point from
each cluster [4].

▪ Column norms in 𝑍 measure centrality in clusters [8].

Experiment 1: Spectral Clustering

[4] Damle, Minden, and Ying, Information and Inference, 2018.
[8] G. Scheibinger, M. J. Wainwright, and B. Yu, The Annals of Statistics, 2015



Fixed 𝑛, increasing cluster separation. Increasing 𝑛, fixed cluster separation.



▪ Our algorithm is fast when the distribution of column
norm mass is concentrated.

▪ What about for unstructured problems?

▪ Unstructured test matrices: random Gaussians.

▪ Essentially the same runtime as LAPACK.

Experiment 2: Random Gaussians



Thank you!
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