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The Column Subset Selection Problem

Let A € R™*" k > 1. Find k columns that are large and linearly independent.

Formalized as volume maximization:

maXger,kVOl(A(:, S5)),

where vol(X) = /det(XTX).

Formalized as singular value maximization:

maxse[n]kgmin(A(: ,S))

These problems are NP-hard [2].

[2] Civril and Magdon-Ismail, Theoretical Computer Science (2009).



CSSP in Matrix Approximation

= How to approximate a matrix in terms of
its own columns? We want:

mingepye||A — Ag|
where Ag = A(:, S)A(G, S)TA.

= Solution: make Vol(A(: , S)) large!

= Theorem [1]: If Vol(A(: ) S)) is within a factor A
u = 1 of its maximum over S € [n]¥, then

\§ ”A - ASllw < p(k + 1) -mingny ar< 14 = Al

[2] Civril and Magdon-Ismail, Theoretical Computer Science (2009).
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CSSP in Model Order Reduction

Predicted Vorticity

= Given nonlinear dynamics:

dx

yri Ax(t) + f(x(t)),

...and a reduced-order surrogate: x(t) = Vz(t),

dz(t)

-15
—= = WTAV)z(t) + VT F(Vz(t)) , , , ,

dt 1 2 3 4 5 6
X

Image source: Yang Li and Fangjun Mei, Deep
learning-based method coupled with small sample
learning for solving partial differential equations,
Multimedia Tools and Applications (2021).

—

= Can we evaluate only a few components of f?

= DEIM algorithm [1]: solve j ..., < CSSP(VT), evaluate
fi, (VTz()) .. fix (VTz(t)), and use interpolary projection to
estimate the remaining components.

[1] Chaturantabut and Sorensen, SIAM Journal on Scientific Computing (2010).




Column Pivoted QR Factorization

= Projection pursuit is a greedy algorithm for CSSP.

1. fori=1,..,k:

2. find the largest column.

3. add it to the “skeleton set”.

9 4. orthogonally project all columns off of it.

Column-pivoted QR implements projection pursuit as
a matrix factorization.

1
2. fori=1,.. m:

3. find the largest residual norm (look at R).

4 swap that column to the front (modify /I, R).
5

rotate to expose new residual norms (modify Q, R).

transformed input;

input matrix triangular structure

reveals geometry of
basis columns.

| |
All = QR
“ T

rotation

permutation; moves
basis columns to the
front
























Towards More Efficient Column Selection

* BLAS-2 Householder reflections are the most expensive part of CPQR.
* Can we limit the amount of work dedicated to reflections?

= Previous solutions: reflect only a few rows at a time, defer the full reflection to BLAS-3.
= ...with partial Householder reflections [6], or
= ...with randomized sketching [5, 7].

= What about matrices with far more columns than rows?
= Spectral clustering [4]: rows <> clusters, columns <— data points.
= Model order reduction [1]: rows <= reduced coordinates, columns «— full coordinates.
* Computational chemistry [3]: rows « orbitals, columns <« 3D grid points.

[1] Chaturantabut and Sorensen, SIAM Journal on Scientific Computing, 2010.

[3] Damle, Lin, and Ying, Journal on Chemical Theory and Computing, 2015.

[4] Damle, Minden, and Ying, Information and Inference, 2018.

[5] Martinsson, Quintana-Orti, Heavner, and de Geijn, SIAM Journal on Scientific Computing, 2017.
[6] Quintana-Orti, Sun, and Bischof, SIAM Journal on Scientific Computing, 1998.

[7] Woolfe, Liberty, Rokhlin, and Tygert, Applied and Computational Harmonic Analysis, 2008.



“Collect, Commit, Expand”

= Main Idea no. 1: large-norm columns are more likely to be good basis columns.

* Main Idea no. 2: apply CPQR on only a subset of large columns, then check correctness.

" Lemma. Let A = [A; A,] and let AIl = QR, A;I1; = Q1R be CPQR factorizations.
Suppose that for some i > 1,

IR, (i, )| = max;|[4,C, )2
Then, assuming no ties in residual column norm,

\_ ANl(:, 1:0) = AT, (5, 1:0). )

= Algorithm overview:
= Collect the tracked columns with largest norm (“candidates”).
" Commit a few of them into the basis (using a smaller CPQR).
= Expand the tracked set to new columns (using a lower norm threshold).

= Repeat.



Algorithm Setup




Algorithm Setup

S L u

= “Tracked” columns have large residual norm, “untracked” columns have smaller overall norm.



“Collect” Stage

permutation

R

= Move the largest tracked columns to the front.



“Collect” Stage

permutation

R

= Move the largest tracked columns to the front.



“Collect” Stage

CIl = QR

N\

= CPQR factorization of candidates; standard Householder reflections.



“Commit” Stage

CIl = QR

S L u

= Examine CPQR factors to decide which candidates go into the skeleton.



“Commit” Stage

S L u

= Examine CPQR factors to decide which candidates go into the skeleton.



“Commit” Stage

Householder reflection

1%

= Apply a BLAS-3 reflection to the tracked set; update residual norms.



“Expand” Stage

permutation

R

= Move the largest “untracked” columns into the “tracked” set.



“Expand” Stage

Householder reflection

434

S L u

= Apply all previous reflections to the newly tracked columns (BLAS-3); update their residual norms.



“Expand” Stage

= Repeat until the skeleton is complete.



Experiment 1: Spectral Clustering

" We draw n i.i.d. samples from a Gaussian mixture model
with k = 20 components.

= Kernel matrix: K(i,j) = exp (—ﬁ ||xl — x]”z) =VDVT,

= Laplacian embedding: Z(:,j) = V(j, 1: k)T.

= Running QRCP on Z selects one point from
each cluster [4].

* Column norms in Z measure centrality in clusters [8].

[4] Damle, Minden, and Ying, Information and Inference, 2018.
[8] G. Scheibinger, M. J. Wainwright, and B. Yu, The Annals of Statistics, 2015



Fixed n, increasing cluster separation.

Cluster Separation

loglo(TGEQPS/ TCCEQR) (CSSP Only)

-1.0

Increasing n, fixed cluster separation.

Dataset Size (log,,n)

10%10( TGEQP3/ TCCEQR) (CSSP Only)




Experiment 2: Random Gaussians

Our algorithm is fast when the distribution of column
norm mass is concentrated.

10° 4| — GEQP3
= What about for unstructured problems? — CCEQR
107" -
= Unstructured test matrices: random Gaussians. g
;§ 1072 1
= Essentially the same runtime as LAPACK. z
1073 -
1074 -
I I I I
102 103 104 10°

Number of Columns (50 Rows)



Thank you!
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