
Identifying and Estimating Dynamical Covariance Matrices with Hierarchical Rank Structure

Identifying and Estimating Dynamical Covariance Matrices
with Hierarchical Rank Structure

Robin Armstrong1, Samuel Otto2, and Anil Damle3

26th Conference of the International Linear Algebra Society
June 24th, 2025

1Cornell University, Center for Applied Mathematics
2Cornell University, Sibley School of Mechanical and Aerospace Engineering
3Cornell University, Department of Computer Science



Identifying and Estimating Dynamical Covariance Matrices with Hierarchical Rank Structure

Background

Covariance Matrices and Localization

Covariance Matrices in Dynamical Systems Modeling

Consider a dynamical system in n dimensions:

x ∈ Rn,
dx

dt
= f (x, t).

Goal: to estimate the covariance matrix of a measure
associated with the dynamics. For example:

Model reduction: covariance of the invariant measure
reveal the appropriate subspace for POD.
Data assimilation: covariance of a prior measure
represents uncertainty about the state, and spreads
information from observed variables to unobserved ones.

We begin with an ensemble or sample covariance estimate:

Σ̂ =
1

s − 1

s∑
i=1

(xi − x)(xi − x)T,

where x1, . . . , xs are an ensemble of model states.
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State Vector Index
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Covariance Matrices and Localization

Sampling Errors and Localization
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Sample size may be much smaller than phase space dimension; s ≪ n.

In this case, Σ̂ will be unacceptably noisy.

Localization [4] regularizes Σ̂ by attenuating “unphysical” correlations:

Σ = L ◦ Σ̂,

where ◦ = element-wise product, L = a symmetric localizing matrix in [0, 1]n×n.
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Background

Covariance Matrices and Localization

Localization Functions

Distance-based localization: correlations are attenuated
based on spatial separation between variables.

Admits a data-sparse matrix representation.
Encodes a priori physical structure.
Careful tuning needed for localization radius.

Prior optimal localization (POLO): [6] small empirical
correlations are attenuated more than large ones.

L(ρ) = (s − 1)ρ2

1 + sρ2
.

No tuning needed.
Adapts to sample size.
Optimal for multivariate Gaussian samples [6].
Expensive to construct for high-dimensional systems.
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Background

Covariance Matrices and Localization

Our Contributions

The problem we address: POLO localization does not produce a data-sparse matrix.
...at least, not without O(n2) work to create sparsity!

Our solution: represent the POLO estimator as a hirarchically rank-structured matrix [3].

Spatial domain is recursively partitioned into nested subdomains.

At each level, admissible blocks (correlations between sufficiently far-apart subdomains) are
compressed to low-rank form.

The challenge we face: we must create a hierarchically rank structured representation
by only looking at our samples.

We are not allowed to form the dense-matrix POLO estimator first!
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Hierarchical Rank Structure

Compression Using Hierarchical Rank Structure

1-D spatial domain

domain decomposition 
tree (root)

covariance matrix
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Background

Hierarchical Rank Structure

Is Hierarchical Rank Structure Appropriate Here?

Informally: hierarchical rank structure is appropriate when
long-distance correlations vary more smoothly than
short-distance correlations.

More Formally: kernels that are asymptotically smooth
[3] (correlations and their derivatives decay algebraically
away from the diagonal) have hierarchical rank structure.

Many details to consider, such as:
What is the procedure for recursively partitioning space?
What is the criterion for determining which blocks are
admissible (can be compressed)?

Examples of hierarchical rank structure:
Greens functions associated with elliptic operators.
Diffusion-based covariance models used in numerical
weather prediction [8]. 500 1000 1500 2000
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Hierarchical Rank Structure vs Low Rank Structure

10 20 30 40 50

10

20

30

40

50
Gaussian Process Sample

−2

−1

0

1

2

Storage Complexity
103 104 105 106 107

R
el

at
iv

e 
F

ro
be

ni
us

 E
rr

or
10−5

10−4

10−3

10−2

10−1

100

Optimal Hierarchical

Optimal Low-Rank



Identifying and Estimating Dynamical Covariance Matrices with Hierarchical Rank Structure

A Hierarchically Rank-Structured Covariance Estimator

Estimating Admissible Blocks: Overview

Notation: Σ̂ = the unlocalized covariance matrix,
(X ,Y) = an admissible subdomain pair, and

L(ρ) = (s − 1)ρ2

1 + sρ2
= POLO localizer for s samples.

Goal: form an approximate low-rank factorization of a
localized admissible block,

Σ(X ,Y) = L(Σ̂(X ,Y)) ≈ LXLT
Y ,

using as few entry evaluations in Σ(X ,Y) as possible.
Approach: a generalized Nyström approximation [7]. The
challenge is to select good skeleton rows/columns without
looking “too hard” at Σ(X ,Y).

≈
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A Hierarchically Rank-Structured Covariance Estimator

Column/Row Selection via Proxy Points

We want to choose a skeleton column set S ⊆ Y, |S| = r ≪ |Y|, such that

σmin(Σ(X , S)) ≈ max
T ⊆Y, |T |=r

σmin(Σ(X , T )).

Column-pivoted QR (CPQR) factorization provides a good solution,[
Σ(X ,S) Σ(X ,Y \ S)

]
= Q

[
R1 R2

]
,

but requires evaluating all the entries in Σ(X ,Y).
Proxy point method: select a set of proxy points [9] P ⊆ X with |P| ≪ |X |. Pivot on Σ(P, :)
instead: [

Σ(P,S) Σ(P,Y \ S)
]
= Q

[
R1 R2

]
.

How to choose proxy points without looking at Σ(X ,Y)?
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A Hierarchically Rank-Structured Covariance Estimator

Proxy Point Selection

Proxy points should correspond to rows that capture the
rank structure of RowΣ(X ,Y).
Use CPQR on rows of Σ̂(X ,Y) (unlocalized).

If ZX , ZY are centered, normalized samples restricted to
X and Y, then

Σ̂(X ,Y) = ZXZT
Y = (nX × s) · (s × nY),

where s ≪ min{nX , nY}.

Lemma

CPQR factorization on A1 = ZYZ
T
X (:, I ) yields an identical

column permutation as CPQR factorization on

A2 = (ZT
YZY)

1/2ZT
X (:, I ).

Note that A1 is nY × nX , while A2 is only s × nX .

Approximation Rank
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A Hierarchically Rank-Structured Covariance Estimator

Full Estimation Procedure

Algorithm 1 Estimating Low-Rank Factors Of An Admissible Block

1: input: ZX ∈ RnX×s , ZY ∈ RnY×s (centered and normalized sample vectors on X and Y)
2: input: k, p ≥ 1 (admissible block rank and skeletonization rank)

3: P1 ← CPQRColumnSelect((ZT
YZY)

1/2ZT
X , p) # selecting p skeleton columns

4: SY ← CPQRColumnSelect(Σ(P1, :), p)
5: P2 ← CPQRColumnSelect((ZT

XZX )1/2ZT
Y , p) # selecting p skeleton rows

6: SX ← CPQRColumnSelect(Σ(:,P2)
T, p)

7: L1L
T
2 ← Σ(:,SY)Σ(SX ,SY)†Σ(SX , :) # rank-p generalized Nyström approximation

8: Q1, R1 ← ThinQR(L1), Q2, R2 ← ThinQR(L2) # optimal reduction to rank k
9: U, Γ, V← SVD(R1R

T
1 )

10: B1 ← Q1U(:, 1 : r)Γ(1 : r , 1 : r)1/2

11: B2 ← Q2V(:, 1 : r)Γ(1 : r , 1 : r)
1/2

12: return B1, B2
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Numerical Experiments

Introducing the Test Cases

Test Case 1: “Storm Track” Dynamics

A modification of “model II” from Lorenz [5]. Like the
Lorenz ‘96 model, but:

admits waves much larger than the grid spacing, and
has a “stable” region of strong damping and a “chaotic”
region of weak damping.

Based off a system in [1].

Domain: 2000 grid points in 1D with periodic boundary
conditions.

Partition: recursive bisection until domain has at most 10
grid points.

Admissibility criterion:

min{ℓ(X ), ℓ(Y)} ≤ d(X , Y),

where ℓ(·) = domain length, and
d(X , Y) = infx∈X , y∈Y |x − y |.

State Vector Index
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Numerical Experiments

Introducing the Test Cases

Test Case 2: 2D Gaussian Process

“Ground-truth” covariance:

Σ0((xi , yi ), (xj , yj)) = exp

(
− (xi − xj)

2 + (yi − yj)
2

2σ2

)
,

where σ = 0.05 and (xi , yi ) are nodes of a 50× 50
uniform grid on [0, 1]× [0, 1].

Samples in R2500 drawn i.i.d. from N (0,Σ).

Partition: recursive bisection of rectangles along longer
axis, until max. sidelength is below 0.2.

Admissibility criterion:

min{ℓ(X ), ℓ(Y)} ≤ d(X , Y),

where ℓ(·) = max sidelength of rectangle, and
d(X , Y) = infx∈X , y∈Y ∥x− y∥2.
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Numerical Experiments

Introducing the Test Cases

Test Case 3: 2D Quasigeostrophic Turbulence

Quasigeostrophic flow approximates the motion of a
rotating fluid where Coriolis and pressure-gradient forces
are nearly in balance [2].

Commonly used as a simplified model of atmospheric flow.

Covariance has mild spatial inhomogeneity.

Domain: 128× 128 grid on a 2D square with periodic
boundary conditions.

Partition: bisecting rectangles until longest side spans at
most 10 gridpoints.

Admissibility Criterion: same as before.

Simulated with code from
https://github.com/jswhit/sqgturb.

Figure: from
https://github.com/jswhit/sqgturb.

https://github.com/jswhit/sqgturb
https://github.com/jswhit/sqgturb
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Numerical Experiments

Introducing the Test Cases

Problem Difficulty
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Numerical Experiments

Results

Results: “Storm Track” Dynamics
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Numerical Experiments

Results

Results: Gaussian Process
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Numerical Experiments

Results

Results: Quasigeostrophic Turbulence
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Conclusion

Conclusions

Localization is an essential aspect of covariance matrix estimation when very few samples are
available.

The POLO localizer has optimality properties and requires no tuning, but expensive to construct
and store.

We have developed: a data-sparse, efficiently constructable covariance estimator that
corresponds to a hierarchically rank-structured approximation of POLO localization.

Next steps:
1 More complex test cases, including 3D spatial domains.
2 Positive-definite estimators,which POLO itself is not.
3 Testing performance in model reduction and data assimilation problems.



Identifying and Estimating Dynamical Covariance Matrices with Hierarchical Rank Structure

Conclusion

References I

Craig H. Bishop, Jeffrey S. Whitaker, and Lili Lei.
Gain form of the ensemble transform Kalman filter and its relevance to satellite data assimilation
with model space ensemble covariance localization.
Monthly Weather Review, 145(11):4575 – 4592, 2017.

Roger Daley.
Atmospheric Data Analysis.
Cambridge Atmosphere and Space Science Series. Cambridge University Press, 1991.

Wolfgang Hackbush.
Hierarchical Matrices: Algorithms and Applications.
Springer, 2015.

Thomas M. Hamill, Jeffrey S. Whitaker, and Chris Snyder.
Distance-dependent filtering of background error covariance estimates in an ensemble Kalman
filter.
Monthly Weather Review, 129(11), 2001.



Identifying and Estimating Dynamical Covariance Matrices with Hierarchical Rank Structure

Conclusion

References II

Edward N. Lorenz.
Designing chaotic models.
Journal of the Atmospheric Sciences, 62(5):1574 – 1587, 2005.

David Vishny, Matthias Morzfeld, Kyle Gwirtz, Eviatar Bach, Oliver R. A. Dunbar, and Daniel
Hodyss.
High-dimensional covariance estimation from a small number of samples.
Journal of Advances in Modeling Earth Systems, 16(9):e2024MS004417, 2024.
e2024MS004417 2024MS004417.

Yatian Wang, Hua Xiang, Chi Zhang, and Songling Zhang.
A generalized Nystrom method with column sketching for low-rank approximation of
nonsymmetric matrices, 2024.

Anthony Weaver and Philippe Courtier.
Correlation modelling on the sphere using a generalized diffusion equation.
Quarterly Journal of the Royal Meteorological Society, 127(575):1815–1846, 2001.



Identifying and Estimating Dynamical Covariance Matrices with Hierarchical Rank Structure

Conclusion

References III

Xin Xing and Edmond Chow.
Interpolative decomposition via proxy points for kernel matrices.
SIAM Journal on Matrix Analysis and Applications, 41(1):221–243, 2020.


	Background
	Covariance Matrices and Localization
	Hierarchical Rank Structure

	A Hierarchically Rank-Structured Covariance Estimator
	Numerical Experiments
	Introducing the Test Cases
	Results

	Conclusion

