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Data Assimilation

... IS a Bayesian approach for estimating an unknown
system state based on noisy, partial observations.

For example: improving atmospheric forecasts using
satellite radiance measurements.

= Data is high-dimensional, ~ 0(109).

= State is even higher-dimensional, = 0(10°).

First ingredient: a “forecast distribution” (prior) on the
system state:

p(x) = P(X = x).

Second ingredient: an observation model,

Y = h(X)+¢.

oal: use Bayes’ ruleto find P(X = x| Y = y).
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Ensemble Kalman Filters (EnKFs)

Kalman filter assumes a Gaussian “forecast” (prior)

in joint state+observable space:
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and assumes Gaussian obs. errors, ¢ ~ N'(0,R).

“Analysis” (posterior) given Y = y becomes Gaussian:

X, ~ N (pg ) With

Ha = Uy + K@y — up),

where K=X,,(R+Z,) 1 =

X, =32 — KEL,

= “Kalman gain matrix.”

Ensemble Kalman filters (EnKFs) transform samples of X
into samples of X,;:

f(Xf'y) ~ Xa
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Stochastic vs Square-Root Filters o

= First papers on EnKF (Evensen, 1994) updated each sample
as if it were the mean.

Xo =X +K(y—n(X;)). ‘-

This undercounts obs. error: Cov[X,] < Z,.

= Stochastic EnKF (Houtekamer & Mitchell, 1998) adds ] Ensemble
random noise to the observation. T E:E;‘
—4 + Assimilation Times

X, = Xf + K(y — h(Xf) — é), é ~ N(0,R). 0.00 005 010 0.15

f- Square-root filter (Whitaker & Hamill, 2002) update the means and perturbations )
separately.

Ua = uy + K(y — pp), K=2ZpnR+Zp)™

Mo Ha =X~ - G(h(Xf) —un),  G= Zyu(R+Zp, + RO+ R—lzmol/z)—l/
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Covariance Localization

The empirical ensemble covariance,

Loy = ZxZ;r
is low-rank (good for efficiency) but noisy (bad for accuracy).

The localized ensemble covariance,

Xyx =Lo (Zsz;)
is less noisy but is full-rank (difficult to compute with).

Operator access (Farchi and Bocquet, FAMS, 2019) lets us run
Krylov methods and linear solves:

Yo = Z zW o L(z® ou).
i

How to handle the square-root?
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Ensemble Modulation

= Constructs a larger modulated ensemble whose
empirical covariance retains some localization.

= Essentially a low-rank factorization of L o (Z,Z)).

= Constructed using a spectral decomposition of L
(Bishop et al., 2017) or using a randomized SVD
(Farchi & Bocquet, 2019).

= Only works well if L o (Z,Z,) has fast singular value
decay!

= Measure of complexity:

modulated ensemble size

original ensemble size
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A Modulation-Free Perturbation Update

= Stochastic EnKF:
Ha =ty + K(y — up)
Xo—ta = X — p —K(R(Xf) + &~ ), &~ N(O,R).

= Key idea 1: deterministically inflate R.

/Theorem (A. and Grooms, 2025). Let K(s) = Z,,((s + DR+ Z,;) "1, and let \
p(s) = [m/s(s + 1)]7 for s € (0, ). If

Ug = p, + K(y — “oé‘)’

Xo— g = X — ty — jo K(s)(h(X,) — wn) p(s)ds,

\then E[X,] and Cov[X,] satisfy the Kalman filter equations. /

= Key idea 2: use quadrature to discretize the integral.
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K(s) = 2, ((s + DR+ Zpp) 7"
Xo = ta = X5 — iy — f K(s)(h(Xr) — pn) p(s)ds
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Reweighting The Integral

= We want to evaluate

| K (R0xy) = ) ps2ds,
0

where p(s) = [my/s(s + 1)]7L. Very slowly decaying!

ﬂ'heorem (A. and Grooms, 2025). Define D € R, and ,§ : D = R, such that\
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for all ¢ in some open set containing {0} U A(R~/2%,,R™1/2). Then,

jo K (h(Xp) = i) p(s)ds = | KG@) (h(xy) = ) B

teD

where (1) = #(£)($(D) + 1)~ (note that [ p(¢) dt = 1). /




A Modulation-Free Localized Square-Root Filter
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Test Case 1: Multi-Layer Lorenz System
= Model and Observing System:

32 coupled layers of 40-variable L'96 systems.
Forcing decreases linearly from 8 (bottom) to 4 (top).
“Satellite-like” measurements of 5 weighted vertical
sums for every 5% column.

Gaussian i.i.d. noise with variance = 1% of
climatological variance.

From Farchi and Bocquet, FAMS (2019).

= Localization: Gaspari-Cohn model-space localization in both
the horizontal and vertical. Tuned for optimal accuracy under
“brute force” ESRF (no approximation of square-root).

= Experiment: 5000 forecast-assimilation cycles (At = 0.05),
average MSE and spread measured over last 4000.
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Test Case 2: MPAS-JEDI

sfc stationPressure Pa nlocs: 71572 nstation:11147

= Background Ensemble: 20-members from 180° 120°W 60°W 0° 60°E 120°E
GEFS analysis.

60°N |
= Background Covariance: SABER ensemble
covariance model, BUMP-NICAS localization. 3N ¢

. . 0°
= QObservations: a single surface pressure

measurement over Italy. 30°S 30°S
= |Implementation: Kalman gain matrices 60°S 60°S

applied using MPAS-JEDI 3D-EnVar

executables (one outer loop). 180° 120°W 60°W 0° 60°E 120°E

65000 70000 75000 80000 85000 90000 95000 100000



Test Case 2: MPAS-JEDI

sfc stationPressure Pa nlocs:6 nstation:1

= Background Ensemble: 20-members from 180° 120°W 60°W 0° 60°E 120°E
GEFS analysis. i 253 ;? =T - =
60°N Qt,,‘w sl = e 9 60°N
= Background Covariance: SABER ensemble \( (55 & f
covariance model, BUMP-NICAS localization. ™| _ 5 i% ' ;h 0N
= Observations: a single surface pressure v {}:@W\ ] v
measurement over Italy. 30°5 V Ud {/:&Jﬁ\ " l30s
: ° 7
= Implementation: Kalman gain matrices 60°5 ; 60°5
applied using MPAS-JEDI 3D-EnVar e T2
executables (one outer loop). 180° 120°W 60°W 0° 60°E 120°E
[ —

100550 100600 100650 100700 100750 100800 100850 100900 100950



MPAS-JEDI Results: Changes in Ensemble Variance
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Conclusion

We have demonstrated: an ensemble square-root filter which
updates perturbations by discretizing an integral form of the
Kalman filter update equations. This lets us avoid evaluating a

matrix square-root, eliminating the need to approximate the
forecast covariance with modulation.

A. and Grooms, “Data Assimilation With An Integral-Form
Ensemble Square-Root Filter,” arXiv:2503.00253
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