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Data Assimilation

▪ … is a Bayesian approach for estimating an unknown

system state based on noisy, partial observations.

▪ For example: improving atmospheric forecasts using 

satellite radiance measurements.

▪ Data is high-dimensional, ≈ 𝒪(106).

▪ State is even higher-dimensional, ≈ 𝒪(109).

▪ First ingredient: a “forecast distribution” (prior) on the 

system state:

𝑝 𝑥 = 𝑃 𝑋 = 𝑥 .
 

▪ Second ingredient: an observation model,

𝑌 = ℎ 𝑋 + 𝜉.
 

▪ Goal: use Bayes’ rule to find 𝑃 𝑋 = 𝑥 𝑌 = 𝑦 .

Source: https://www.researchgate.net/figure/Radiance-received-by-the-

satellite-sensor_fig4_375018928



Ensemble Kalman Filters (EnKFs)

▪ Kalman filter assumes a Gaussian “forecast” (prior)

in joint state+observable space:

𝑋𝑓

ℎ 𝑋𝑓
∼ 𝒩

𝜇𝑥

𝜇ℎ
,

𝚺𝑥𝑥 𝚺𝑥ℎ

𝚺𝑥ℎ
T 𝚺ℎℎ

,

and assumes Gaussian obs. errors, 𝜉 ∼ 𝒩(0, 𝐑).

▪ “Analysis” (posterior) given 𝑌 = 𝑦 becomes Gaussian: 

𝑋𝑎 ∼ 𝒩(𝜇𝑎, Σ𝑎) with

𝜇𝑎 = 𝜇𝑥 + 𝐊 𝑦 − 𝜇ℎ , 𝚺𝑎 = 𝚺𝑥𝑥 − 𝐊𝚺𝑥ℎ
T ,

where 𝐊 = 𝚺𝑥ℎ 𝐑 + 𝚺ℎℎ
−1 = “Kalman gain matrix.”

▪ Ensemble Kalman filters (EnKFs) transform samples of 𝑋𝑓 

into samples of 𝑋𝑎:

𝑓 𝑋𝑓, 𝑦 ∼ 𝑋𝑎



Stochastic vs Square-Root Filters

▪ First papers on EnKF (Evensen, 1994) updated each sample

as if it were the mean.

෠𝑋𝑎 = 𝑋𝑓 + 𝐊 𝑦 − ℎ 𝑋𝑓 .

 
This undercounts obs. error: Cov[ ෠𝑋𝑎] ≺ 𝚺𝑎.

▪ Stochastic EnKF (Houtekamer & Mitchell, 1998) adds 

random noise to the observation.

𝑋𝑎 = 𝑋𝑓 + 𝐊 𝑦 − ℎ 𝑋𝑓 − መ𝜉 ,  መ𝜉 ∼ 𝒩 0, 𝐑 .

 
▪ Square-root filter (Whitaker & Hamill, 2002) update the means and perturbations 

separately.

𝜇𝑎  = 𝜇𝑥 + 𝐊 𝑦 − 𝜇ℎ ,  𝐊 = 𝚺𝑥ℎ(𝐑 + 𝚺ℎℎ)−1

𝑋𝑎 − 𝜇𝑎 = 𝑋𝑓 − 𝜇𝑥 − 𝐆 ℎ 𝑋𝑓 − 𝜇ℎ , 𝐆 =  𝚺𝑥ℎ(𝐑 + 𝚺ℎℎ + 𝐑 𝐈 + 𝐑−1𝚺ℎℎ
1/2)−1



Covariance Localization

▪ The empirical ensemble covariance,

𝚺𝑥𝑥 = 𝐙𝑥𝐙𝑥
T,

is low-rank (good for efficiency) but noisy (bad for accuracy).

▪ The localized ensemble covariance, 

𝚺𝑥𝑥 = 𝐋 ∘ 𝐙𝑥𝐙𝑥
𝑇

is less noisy but is full-rank (difficult to compute with).

▪ Operator access (Farchi and Bocquet, FAMS, 2019) lets us run 

Krylov methods and linear solves:

𝚺𝑥𝑥𝑢 = ෍
𝑖
𝑧(𝑖) ∘ 𝐋(𝑧(𝑖) ∘ 𝑢) .

 
▪ How to handle the square-root?

“true”

covariance

ensemble 

covariance 

(unlocalized)

ensemble 

covariance 

(localized)



Ensemble Modulation

▪ Constructs a larger modulated ensemble whose 

empirical covariance retains some localization.

▪ Essentially a low-rank factorization of 𝐋 ∘ (𝐙𝑥𝐙𝑥
T).

▪ Constructed using a spectral decomposition of 𝐋 

(Bishop et al., 2017) or using a randomized SVD 

(Farchi & Bocquet, 2019).

▪ Only works well if 𝐋 ∘ (𝐙𝑥𝐙𝑥
T) has fast singular value 

decay!

▪ Measure of complexity:

𝑘 =
modulated ensemble size

original ensemble size

=≈

original 

ensemble (𝐙)

low-rank 

localizer

≈

𝐙𝑥𝐙𝑥
T =𝐋 =

𝐋 ∘ 𝐙𝑥𝐙𝑥
T =

modulated 

ensemble (𝐌)



▪ Stochastic EnKF:

𝜇𝑎  = 𝜇𝑥 + 𝐊 𝑦 − 𝜇ℎ

𝑋𝑎 − 𝜇𝑎 = 𝑋𝑓 − 𝜇𝑥 − 𝐊 ℎ 𝑋𝑓 + 𝜉 − 𝜇ℎ ,  𝜉 ∼ 𝒩 0, 𝐑 .

 
▪ Key idea 1: deterministically inflate 𝐑.

▪ Key idea 2: use quadrature to discretize the integral.

A Modulation-Free Perturbation Update

Theorem (A. and Grooms, 2025). Let 𝐊 𝑠 = 𝚺𝑥ℎ((𝑠 + 1)𝐑 + 𝚺ℎℎ)−1, and let 

𝑝 𝑠 = [𝜋 𝑠 𝑠 + 1 ]−1 for 𝑠 ∈ (0, ∞). If

𝜇𝑎  = 𝜇𝑥 + 𝐊 𝑦 − 𝜇ℎ ,

𝑋𝑎 − 𝜇𝑎 = 𝑋𝑓 − 𝜇𝑥 − න
0

∞

𝐊 𝑠 ℎ 𝑋𝑓 − 𝜇ℎ  𝑝 𝑠 𝑑𝑠 ,

then 𝔼 𝑋𝑎  and Cov 𝑋𝑎  satisfy the Kalman filter equations.



𝐊 0 = 𝐊
un-perturbed EnKF; 

analysis is under-

dispersed.

𝐊(∞) = 𝟎
data has no effect; 

analysis is over-

dispersed

𝐊 𝑠 = 𝚺𝑥ℎ (𝑠 + 1)𝐑 + 𝚺ℎℎ
−1

𝑠𝑠 = 0 𝑠 = ∞



𝐊 𝑠 = 𝚺𝑥ℎ (𝑠 + 1)𝐑 + 𝚺ℎℎ
−1

𝑋𝑎 − 𝜇𝑎 = 𝑋𝑓 − 𝜇𝑥 − න
0

∞
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𝐊(∞) = 𝟎
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▪ We want to evaluate

න
0

∞

𝐊 𝑠 ℎ 𝑋𝑓 − 𝜇ℎ  𝑝 𝑠 𝑑𝑠 ,

where 𝑝 𝑠 = [𝜋 𝑠 𝑠 + 1 ]−1. Very slowly decaying!

Reweighting The Integral

Theorem (A. and Grooms, 2025). Define 𝒟 ⊆ ℝ+ and Ƹ𝑟, Ƹ𝑠 ∶ 𝒟 → ℝ+ such that

1

𝑐 + 1
= න

𝑡∈𝒟

Ƹ𝑟(𝑡)

𝑐 + Ƹ𝑠(𝑡) + 1
𝑑𝑡

for all 𝑐 in some open set containing {0} ∪ 𝜆(𝐑−1/2𝚺ℎℎ𝐑−1/2). Then,

න
0

∞

𝐊 𝑠 ℎ 𝑋𝑓 − 𝜇ℎ  𝑝 𝑠 𝑑𝑠 = න
𝑡∈𝒟

𝐊 Ƹ𝑠(𝑡) ℎ 𝑋𝑓 − 𝜇ℎ  Ƹ𝑝(𝑡)𝑑𝑡,

where Ƹ𝑝 𝑡 = Ƹ𝑟(𝑡)( Ƹ𝑠 𝑡 + 1)−1 (note that ׬ Ƹ𝑝(𝑡) 𝑑𝑡 = 1).



A Modulation-Free Localized Square-Root Filter

▪ Quadrature approximation:

න
𝑡∈𝒟

𝐊 Ƹ𝑠(𝑡) ℎ 𝑋𝑓 − 𝜇ℎ  Ƹ𝑝(𝑡)𝑑𝑡 ≈ ෍
𝑞=1

𝑄

𝑝𝑞𝐊 𝑠𝑞 ℎ 𝑋𝑓 − 𝜇ℎ

▪ 1. for 𝑖 = 1, … , 𝑚             # both loops parallelize

▪ 2.     𝑧𝑎
(𝑖)

← 𝑥𝑓
𝑖

− 𝜇𝑥

▪ 3.     for 𝑞 = 1, … , 𝑄

▪ 4.         𝑧𝑎
(𝑖)

← 𝑧𝑎
(𝑖)

− 𝑝𝑞𝐊 𝑠𝑞 ℎ 𝑥𝑓
𝑖

− 𝜇ℎ       # PGC

▪ 5.     end

▪ 6. end

▪ Measure of complexity: 𝑘 =  number of quadrature points

…

…

forecast ensemble 

perturbations

𝑄 copies of the 

perturbations; 

inflate obs-errs in 

𝑞th ensemble by 

factor 1 + 𝑠𝑞.

𝑄 sets of analysis 

perturbations

re-combine with 

quadrature weights
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Test Case 1: Multi-Layer Lorenz System

▪ Model and Observing System:

▪ 32 coupled layers of 40-variable L’96 systems.

▪ Forcing decreases linearly from 8 (bottom) to 4 (top).

▪ “Satellite-like” measurements of 5 weighted vertical 

sums for every 5th column.

▪ Gaussian i.i.d. noise with variance ≈ 1% of 

climatological variance.

▪ From Farchi and Bocquet, FAMS (2019).

▪ Localization: Gaspari-Cohn model-space localization in both 

the horizontal and vertical. Tuned for optimal accuracy under 

“brute force” ESRF (no approximation of square-root).

▪ Experiment: 5000 forecast-assimilation cycles (Δ𝑡 = 0.05),

average MSE and spread measured over last 4000.





Test Case 2: MPAS-JEDI

▪ Background Ensemble: 20-members from 

GEFS analysis.

▪ Background Covariance: SABER ensemble 

covariance model, BUMP-NICAS localization.

▪ Observations: a single surface pressure 

measurement over Italy.

▪ Implementation: Kalman gain matrices 

applied using MPAS-JEDI 3D-EnVar 

executables (one outer loop).
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MPAS-JEDI Results: Changes in Ensemble Variance

EDA/3D-EnVar (perturbed obs) InFo-ESRF (no obs perturbations)



Conclusion

…

…

forecast ensemble 

perturbations

𝑄 copies of the 

perturbations; 

inflate obs-errs in 

𝑞th ensemble by 

factor 1 + 𝑠𝑞.

𝑄 sets of analysis 

perturbations

re-combine with 

quadrature weights

▪ We have demonstrated: an ensemble square-root filter which 

updates perturbations by discretizing an integral form of the 

Kalman filter update equations. This lets us avoid evaluating a 

matrix square-root, eliminating the need to approximate the 

forecast covariance with modulation.

A. and Grooms, “Data Assimilation With An Integral-Form 

Ensemble Square-Root Filter,” arXiv:2503.00253
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