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Background and Notation
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Analysis: X, = (X7 | Y = y).
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and K = X, (R + Z,,) ! = “Kalman gain matrix.” /

Source: https.//www.researchgate.net/figure/Radiance-received-by-the-

satellite-sensor_figd_375018928

Ensemble Kalman filters (EnKFs): transform samples of X
into samples of X;:

f(Xf;)’) ~ Xa



Ensemble Kalman Filters | — :

= Original EnKF (Evensen, 1994): updates each sample of X¢ 6
as if it were the mean.

Xo =X +K(y—n(X;)). 3

Obs. error is undercounted, Cov[X,] < Z,.

Ensemble
= Truth

= Stochastic EnKF (Houtekamer & Mitchell, 1998) adds ® Data
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random noise to the observation. : : . : . . ! . .
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Xo=Xr+K(y—n(Xs)-¢), &~nN(OR.

/- Square-root filter (Whitaker & Hamill, 2002) update the means and perturbations )
separately.
Ua = px + K(y — up), K=2Z(R+Zp,)™"

\_ Xa~Ha=Xr— iy~ G(h(Xf) —un), G = Zy(R+Zpp + RU+ R_lzhh)l/z)_lj




Covariance Localization

The empirical ensemble covariance,

Loy = ZxZ;r
is low-rank (good for efficiency) but noisy (bad for accuracy).

The localized ensemble covariance,

Xy =Lo (Zsz;)

is less noisy but full-rank (difficult to compute with).

Operator access lets us run Krylov methods and linear solves:

o u= Z 20 o Lz o),
i

How to handle the square-root?
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Ensemble Modulation

= Constructs a larger modulated ensemble whose
empirical covariance retains some localization.

= Essentially a low-rank factorization of L o (Z,Z)).

= Constructed using a spectral decomposition of L
(Bishop et al., 2017) or using a randomized SVD
(Farchi & Bocquet, 2019).

= Only works well if L o (Z,Z,) has fast singular value
decay!

= Measure of complexity:

modulated ensemble size

original ensemble size

low-rank
localizer

Lo (Z,ZY) =

Q

original
ensemble (Z)
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A Modulation-Free Perturbation Update

= Stochastic EnKF:
Ha =ty + K(y — up)
Xo—ta = X — p —K(R(Xf) + &~ ), &~ N(O,R).

= Key idea 1: deterministically inflate R.

/Theorem (A. and Grooms, 2025). Let K(s) = Z,,((s + DR+ Z,;,) "1, and let \
p(s) = [m/s(s + 1)]7 for s € (0, ). If

Ug = p, + K(y — “oé‘)’

Xo— g = X — ty — jo K(s)(h(X,) — wn) p(s)ds,

\then E[X,] and Cov[X,] are as given by Kalman’s equations. /

= Key idea 2: use quadrature to discretize the integral.




Reweighting The Integral

= We want to evaluate

| K (R0xy) = ) ps2ds,
0

where p(s) = [my/s(s + 1)]7L. Very slowly decaying!

ﬂ'heorem (A. and Grooms, 2025). Define D € R, and ,§ : D = R, such that\

1 _J AGI
Vet 1 Jepc+3@) +1

for all ¢ in some open set containing {0} U A(R~/2%,,R™1/2). Then,

jo K (h(Xp) = i) p(s)ds = | KG@) (h(xy) = ) B

teD

where (1) = #(£)($(D) + 1)~ (note that [ p(¢) dt = 1). /




InFo-ESRF (Integral-Form Ensemble Square-Root Filter)

= Quadrature approximation: |:||:I forecast ensemble
1] perturbations
Q
j K(3(8) (h(Xf) — un) P(D)dt = 2 peK(sq) (h(Xf) — ) / \
teD q=1 Q copies of the
[ ] | ] perturbations;
| | | I inflate obs-errs in
| ] | |:| th
/- 1.fori=1,. # both loops parallelize \ | | | 1 qf ensemble by
@ (z) actor 1 + s,.
" 20 Zgh e Xp — Uy
= 3. forg=1,..,0
. O () DY _
4. “a qu(sq)( ( ) “h) #Pac | B : ] O setsofanalysis
= 5, end | ] | | C_—1 perturbations
\' 6. end / | b I —
= Measure of complexity: \ \' /
I
1 re-combine with
k = number of quadrature points | quadrature weights




32

Test Case 1: Multi-Layer Lorenz System

= Model and Observing System:

= 32 coupled layers of 40-variable L'96 systems.

= Forcing decreases linearly from 8 (bottom) to 4 (top).

= “Satellite-like” measurements of 5 weighted vertical
sums for every 5t column.

= @Gaussian i.i.d. noise with variance = 1% of the
climatological variance. 0 5 10 15 20

= From Farchi and Bocquet, FAMS (2019). Model Time
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Vertical Index
>

0.3 +
= Localization: Gaspari-Cohn model-space localization in both

the horizontal and vertical.
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= Experiment: 5000 forecast-assimilation cycles (At = 0.05),
average MSE and spread measured over last 4000.
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Test Case 2: MPAS-JEDI

sfc stationPressure Pa nlocs: 71572 nstation:11147

= Background Ensemble: 20-members from 180° 120°W 60°W 0° 60°E 120°E
GEFS analysis.

60°N |
= Background Covariance: SABER ensemble
covariance model, BUMP-NICAS localization. 3N ¢

. . 0°
= QObservations: a single surface pressure

measurement over Italy. 30°S 30°S
= |Implementation: Kalman gain matrices 60°S 60°S

applied using MPAS-JEDI 3D-EnVar

executables (one outer loop). 180° 120°W 60°W 0° 60°E 120°E
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Test Case 2: MPAS-JEDI

sfc stationPressure Pa nlocs:6 nstation:1

= Background Ensemble: 20-members from 180° 120°W 60°W 0° 60°E 120°E
GEFS analysis. i 253 ;? =T - =
60°N Qt,,‘w sl = e 9 60°N
= Background Covariance: SABER ensemble \( (55 & f
covariance model, BUMP-NICAS localization. ™| _ 5 i% ' ;h 0N
= Observations: a single surface pressure v {}:@W\ ] v
measurement over Italy. 30°5 V Ud {/:&Jﬁ\ " l30s
: ° 7
= Implementation: Kalman gain matrices 60°5 ; 60°5
applied using MPAS-JEDI 3D-EnVar e T2
executables (one outer loop). 180° 120°W 60°W 0° 60°E 120°E
[ —

100550 100600 100650 100700 100750 100800 100850 100900 100950



MPAS-JEDI Results: Changes in Ensemble Variance

surface_pressure, lev=0 surface_pressure, lev=0
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Conclusion

We have demonstrated: an ensemble square-root filter which
updates perturbations by discretizing an integral form of the
Kalman filter update equations. This lets us avoid evaluating a
matrix square-root, eliminating the need to approximate the

forecast covariance with modulation.

Preprint available on arXiv!
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