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Background

Covariance Estimation

Covariance Matrix Estimation

Data assimilation (DA) represents forecast uncertainty using a
prior probability distribution P0.

Ensemble DA represents P0 by an ensemble:

x1, x2, . . . , xm ∼ P0.

The prior covariance matrix allows information to spread from
observed variables onto unobserved ones:

C ··= Cov[P0].

This matrix must be estimated from the ensemble:

C ≈ Ĉ ··=
1

m − 1

m∑
i=1

(xi − x)(xi − x)T,

where x = 1
m

∑m
i=1 xi .

This approximation is very inaccurate when m ≪ n.
State Vector Index
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Background

Covariance Estimation

Correlation-Based Localization

We address undersampling with localization
[Hamill et al., 2001, Vishny et al., 2024]:

Ci,j = ℓi,j Ĉi,j ,

...where Ĉ = sample covariance of the small ensemble.

Prior Optimal LOcalization (POLO) [Vishny et al., 2024] is the
optimal localization function for multivariate Gaussian samples:

Ci,j = ℓi,j Ĉi,j , ℓi,j =
(m − 1)ρ2i,j

1 +mρ2i,j
,

where m = ensemble size, ρi,j = true correlation between state
variables i and j .

In practice we must estimate ρi,j from the samples.

Correlation Between Xi and Xj
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Background

Covariance Estimation

Data Sparsity

No matter how we estimate the covariance, we need the
estimate to be data sparse; representable in ≪ n2 floating point
numbers.

Unlocalized covariance of size-m ensemble is low-rank;
we pay O(mn) to store the samples.

Correlation-based localization destroys low-rank strucrure;
we need a different representation.

Recompressing to low-rank form will not work.

Eckart-Young Theorem [Eckart and Young, 1936]

If C is a covariance matrix and λ1 ≥ λ2 ≥ . . . ≥ 0 are its eigenvalues,
then

∥C̃k − C∥F ≥ E(k)
min

··=
√

λ2
k+1 + λ2

k+2 + . . .

for any rank-k approximation C̃k .

≈

=

True Covariance 
(200 x 200)

Ens. Covariance
(20 members)

Ens. Perturbations
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Background

Hierarchical Rank Structure

Hierarchical Rank Structure

Today I will show you...

...a way to improve the efficiency of correlation-based
localization using hierarchical rank structure.

Informally: correlations vary more smoothly at long
distances than at short distances.

More formally: cross-covariances between
well-separated domains are low-rank.

Definition

A rank-k H-matrix is a data structure for representing
an n × n hierarchically rank-structured matrix in
O(nk log n) floating point numbers while supporting fast
linear algebra operations (e.g., matvecs, linear system
solves).
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Hierarchical Rank Structure
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Background

Hierarchical Rank Structure

Compression Using Hierarchical Rank Structure

1-D spatial domain

domain decomposition 
tree (root)

covariance matrix
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Algorithm Details

Estimating Cross Covariances

Let X , Y be well-separated subdomains of space.

The goal: Localize the cross-covariance matrix

ĈX ,Y = ZXZT
Y ,

where ZX (resp. ZY ) = perturbations on X (resp. Y).
We need the end result to be in low-rank form.

“Baseline” localized covariance (not low-rank):

CX ,Y = (ZXZT
Y ) ∗ ℓPOLO((PXZX )(PYZY )T, m),

where PX , PY are smoothing transformations, and
ℓPOLO(·, m) = POLO localizer for m members.

POLO function provides adaptivity to ensemble size, smoothing
transformations provide more robustness against sampling noise.

Example: Localized covariance.
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Algorithm Details

Skeletal Approximations

We need our cross-covariance estimates to be low-rank in order
for the overall estimate to be computationally efficient.

We use a generalized Nÿstrom approximation
[Murray et al., 2023]:

1 Select a small number of skeleton rows.
2 Select a small number of skeleton columns.
3 Approximate the remaining rows/columns in terms of the skeleton

rows/columns.

We only ever form the skeleton rows/columns; we never form
the entire cross-covariance block.

How to choose skeleton rows/columns? Main ingredients:
1 Gauss-Legendre quadrature, and
2 column-pivoted QR factorization.

≈
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Numerical Experiments

Test Case 1: “Storm Track” Dynamics

A modification of “model II” from [Lorenz, 2005]. Like the
Lorenz ‘96 model, but:

admits waves much larger than the grid spacing, and
has a “stable” region of strong damping and a “chaotic” region of
weak damping.

Based off a system from [Bishop et al., 2017].

Domain: 2000 grid points in 1D with periodic boundary
conditions.

Partition: recursive bisection until domain has at most 10 grid
points.

Admissibility criterion:

min{ℓ(X ), ℓ(Y)} ≤ d(X , Y),

where ℓ(·) = domain length, and d(X , Y) = infx∈X , y∈Y |x− y |.
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Numerical Experiments

Test Case 2: 2D Quasigeostrophic Turbulence

Quasigeostrophic flow approximates the motion of a rotating
fluid where Coriolis and pressure-gradient forces are nearly in
balance [Daley, 1991].

Domain: 128× 128 grid on a 2D square with periodic boundary
conditions.

Partition: bisecting rectangles until longest side spans at most
10 gridpoints.

Admissibility criterion:

min{ℓ(X ), ℓ(Y)} ≤ d(X , Y),

where ℓ(·) = max sidelength of rectangle, and
d(X , Y) = infx∈X , y∈Y ∥x− y∥2.
Simulated with code from
https://github.com/jswhit/sqgturb.

Figure: from
https://github.com/jswhit/sqgturb.

https://github.com/jswhit/sqgturb
https://github.com/jswhit/sqgturb
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Numerical Experiments

Problem Difficulty

Eigenvalue Index
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Numerical Experiments

Results: “Storm Track” Dynamics
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Numerical Experiments

Results: Quasigeostrophic Turbulence
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Numerical Experiments

Test Case 3: Data Assimilation

Model: a 2D Gaussian process on a 50× 50 grid.

Observing system: a 5× 5 grid of “sensors” that observe a
weighted average over a small nearby region.

Error measure 1: relative analysis variance error.

E1 =
1

n

n∑
i=1, j=1

|vij − v̂ij |
vij

,

where vij (resp. v̂ij ) = true (resp. ensemble) analysis variance at
gridpoint (i , j).

Error measure 2: relative Kalman gain accuracy.

E2 = ∥K∥−1
2 ∥K̂− K∥2,

where K (resp. K̂) = true (resp. localized ensemble) Kalman
gain matrix.
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Numerical Experiments

Results: Data Assimilation
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Conclusions

Conclusions

Summary

High-dimensional covariance estimation from a limited number of
samples is a challenging problem arising in DA. Localization is
critical for dealing with the effects of undersampling. Hierarchical
rank structure provides an effective framework for localization.

Future Directions

Using a different hierarchical matrix format: recursive
skeletonization [Minden et al., 2017].

Enforcing positive definiteness (related to the above).

Testing on model reduction and cycled DA problems.

Thank you!
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Conclusions
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