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Covariance Estimation

Covariance Matrix Estimation

m Data assimilation (DA) represents forecast uncertainty using a 2000
prior probability distribution Py. 0
m Ensemble DA represents Py by an ensemble: 1500+ 2
X1, X2, ..., Xm ~ Po. 1000 1 0
m The prior covariance matrix allows information to spread from 5001 =0
observed variables onto unobserved ones: 10
C := Cov[Py] 500 1000 1500 2000
250
® This matrix must be estimated from the ensemble: 0o
1 m
Cx~Ci= —— xi —X)(x; —%)T 2
P RCRLICRLE

- — 1 m )
where X = - >77 ) x;.

m This approximation is very inaccurate when m < n.

500 1000 1500 2000
State Vector Index
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Covariance Estimation

Correlation-Based Localization

m We address undersampling with localization
[Hamill et al., 2001, Vishny et al., 2024]:
POLO Localization Function (20 samples)

Cij = 4i,;Cij,
...where C = sample covariance of the small ensemble. 08+
m Prior Optimal LOcalization (POLO) [Vishny et al., 2024] is the
optimal localization function for multivariate Gaussian samples: 064
~ (m—1)p?. -
C..—=¢: .C:: 0 — Y Ny
iJj ihj =iz ij 1+mplgj ) 04 -
where m = ensemble size, pi,j = true correlation between state
variables i and j. 0.2
m In practice we must estimate p; ; from the samples.
0.0+

T

T T T T
-10 -05 0.0 0.5 1.0
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Covariance Estimation

Data Sparsity

m No matter how we estimate the covariance, we need the
estimate to be data sparse; representable in < n? floating point

numbers. True Covariance

m Unlocalized covariance of size-m ensemble is low-rank; (200 x 200)

we pay O(mn) to store the samples.

m Correlation-based localization destroys low-rank strucrure;
we need a different representation.

m Recompressing to low-rank form will not work.

Eckart-Young Theorem [Eckart and Young, 1936

If C is a covariance matrix and A\; > X\» > ... > 0 are its eigenvalues,

then
== k
1€k — Cllp > €90, = \ /A2, + Xyt

for any rank-k approximation Ek.

Ens. Covariance
(20 members)

Q




Localizing High-Dimensional Covariance Estimates with Hierarchical Rank Structure

L Background

Hierarchical Rank Structure

Hierarchical Rank Structure

Today | will show you...

...a way to improve the efficiency of correlation-based
localization using hierarchical rank structure.

m Informally: correlations vary more smoothly at long
distances than at short distances.

m More formally: cross-covariances between
well-separated domains are low-rank.

A rank-k H-matrix is a data structure for representing
an n X n hierarchically rank-structured matrix in

O(nk log n) floating point numbers while supporting fast
linear algebra operations (e.g., matvecs, linear system
solves).
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Hierarchical Rank Structure

Today | will show you...

. - . 1000 1.0
...a way to improve the efficiency of correlation-based
localization using hierarchical rank structure.
800
) 05
m Informally: correlations vary more smoothly at long
distances than at short distances. 600 -
m More formally: cross-covariances between 0.0
well-separated domains are low-rank. 400
05
o g . 200 -
A rank-k H-matrix is a data structure for representing
an n X n hierarchically rank-structured matrix in
-1.0

O(nk log n) floating point numbers while supporting fast
linear algebra operations (e.g., matvecs, linear system
solves).
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Hierarchical Rank Structure

Compression Using Hierarchical Rank Structure

o

domain decomposition
tree (root)

[ 1-D spatial domain ]

covariance matrix
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Compression Using Hierarchical Rank Structure
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Estimating Cross Covariances

Let X, ) be well-separated subdomains of space.

The goal: Localize the cross-covariance matrix
¢ T
Cxy=12ZxZy,

where Zx (resp. Zy) = perturbations on X (resp. )).
We need the end result to be in low-rank form.

“Baseline” localized covariance (not low-rank):
Cx,y = (ZxZy) * troLo((PxZx)(PyZy)", m),

where Py, Py, are smoothing transformations, and
LpoLo (-, m) = POLO localizer for m members.

POLO function provides adaptivity to ensemble size, smoothing

transformations provide more robustness against sampling noise.

Example: Localized covariance.
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Skeletal Approximations

m We need our cross-covariance estimates to be low-rank in order
for the overall estimate to be computationally efficient.

m We use a generalized Nystrom approximation
[Murray et al., 2023]:

Select a small number of skeleton rows.

Select a small number of skeleton columns.

Approximate the remaining rows/columns in terms of the skeleton
rows/columns.

m We only ever form the skeleton rows/columns; we never form
the entire cross-covariance block. . ‘
= How to choose skeleton rows/columns? Main ingredients:

Gauss-Legendre quadrature, and
column-pivoted QR factorization.

Q
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Test Case 1: “Storm Track” Dynamics

m A modification of “model II" from [Lorenz, 2005]. Like the

2000
Lorenz ‘96 model, but: 10
m admits waves much larger than the grid spacing, and 1500 ]
m has a “stable” region of strong damping and a “chaotic” region of 20
weak damping.
. 1000 - 0
Based off a system from [Bishop et al., 2017].
= Domain: 2000 grid points in 1D with periodic boundary 500 20
conditions. 0
m Partition: recursive bisection until domain has at most 10 grid S0 1000 1500 2000
points. 250
m Admissibility criterion:
200
min{£(X), (V)} < d(X, V), ,
g
where £(-) = domain length, and d(X, V) = infycx, ey X —y| 100

500 1000 1500 2000
State Vector Index
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Test Case 2: 2D Quasigeostrophic Turbulence

Quasigeostrophic flow approximates the motion of a rotating
fluid where Coriolis and pressure-gradient forces are nearly in
balance [Daley, 1991].

Domain: 128 x 128 grid on a 2D square with periodic boundary
conditions.

Partition: bisecting rectangles until longest side spans at most
10 gridpoints.

m Admissibility criterion:
min{£(X), (¥)} < d(X, V),

where £(-) = max sidelength of rectangle, and
d(X, ) =infecx,yey Ix = yll2-

m Simulated with code from
https://github.com/jswhit/sqgturb.

Figure: from
https://github.com/jswhit/sqgturb.


https://github.com/jswhit/sqgturb
https://github.com/jswhit/sqgturb
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Problem Difficulty
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Results: “Storm Track” Dynamics

g —%— POLO (optimal) i ---n(n+1)/2

0.6—f —v— POLO (empirical) i -.- HRS
= E —— HRS —+— Samples
5 ] 1.0x107 4
IEI 053 —e— Unlocalized 3
2 g = ]
g E % 1
‘E 04 4 i'é_ g
= 3 B O i T T I e e PP
e 3 S
£ 037 £ 1.0x10° 4
S E g E
~ E S ]
9 E 7 ]
E 3 4
£ 0273 ]
= 3 J
@ E

0.1 3

3 1.0x10° 1
00— . . . . i . . . .
40 80 120 160 200 40 80 120 160 200

Samples Samples



Localizing High-Dimensional Covariance Estimates with Hierarchical Rank Structure

L Numerical Experiments

Results: Quasigeostrophic Turbulence

Squared Relative Frobenius Error
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Test Case 3: Data Assimilation

m Model: a 2D Gaussian process on a 50 x 50 grid.

Observing system: a 5 x 5 grid of “sensors” that observe a
weighted average over a small nearby region.

Error measure 1: relative analysis variance error.
n

1 [vii — Vi)
E == sy "yt
=2 >

k)

Vi

i=1, j=1 u
where vj; (resp. Vjj) = true (resp. ensemble) analysis variance at
gridpoint (/,J).

m Error measure 2: relative Kalman gain accuracy.

Er = K| [[K — K2,

where K (resp. R) = true (resp. localized ensemble) Kalman
gain matrix.
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Results: Data Assimilation
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Conclusions

Summary

High-dimensional covariance estimation from a limited number of
samples is a challenging problem arising in DA. Localization is
critical for dealing with the effects of undersampling. Hierarchical
rank structure provides an effective framework for localization.

Future Directions

m Using a different hierarchical matrix format: recursive
skeletonization [Minden et al., 2017].

m Enforcing positive definiteness (related to the above).

m Testing on model reduction and cycled DA problems.

7l

= Thank you!
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